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Abstract 

Bacterial infection and antibiotic resistance are major threats to human health and very few 

solutions are available to combat this eventuality. A growing number of studies indicate that 

cold (non-thermal) plasma treatment can be used to prevent or eliminate infection from 

bacteria, bacterial biofilms, fungi and viruses. Mechanistically, a cold plasma discharge is 

composed of high-energy electrons that generate short-lived reactive oxygen and nitrogen 

species which further react to form more stable compounds (NO2, H2O2, NH2Cl and others) 

depending on the gas mixture and plasma parameters. Cold plasma devices are being 

developed for medical applications including infection, cancer, plastic surgery applications 

and more. Thus, in this review we explore the potential utility of cold plasma as a non-

antibiotic approach for treating post-surgical orthopaedic infections. 

Keywords: bacteria, biofilm, cold plasma, orthopaedic infection, Staphylococcus aureus, 

titanium. 
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Introduction 

Orthopaedic procedures often require the implantation of medical devices and hardware 

composed of metals; these metals are rapidly coated with serum proteins and thus present a 

preferred site for biofilm formation. Due to the presence of biofilm, infections associated with 

orthopaedic implants are notoriously difficult to cure and when the specter of antibiotic-

resistant organisms is included, it becomes clear that new therapies have to be defined. 

Although infections are rare, the presence of the bacterial biofilm on titanium or other implant 

materials, create complications that not only threaten the surgical outcome and the patient’s 

health, but also incur significant health care expense. In this review, we explore the potential 

of cold atmospheric plasma treatment to combat post-surgical infection of orthopaedic 

implants, hardware and surgical site tissues. Application of this technology has the potential 

to provide a low cost, efficient and effective treatment which can be seamlessly integrated 

into current post-surgical infection treatment practices. Additionally, the use of cold plasma to 

eradicate orthopaedic infection does not preclude treatment with antibiotics to synergistically 

alleviate the infection, and the associated pain, disability, and suffering.  

Post-surgical orthopaedic infection 

Surgical site infection accounts for a majority of complications in hospitalized patients, falling 

only slightly behind adverse drug events (Bakkum-Gamez et al., 2017). These infections 

cause approximately 88 000 deaths and cost 4.5 billion dollars per year. Adding to this is the 

global crisis of antibiotic resistance (Banin et al., 2017). The US Center for Disease Control 

and Prevention has declared antibiotic resistance to be among the world’s most pressing 

public health concerns. Tens of thousands of Americans are estimated to die from infections 

caused by antibiotic-resistant bacteria each year, and these number of infections are predicted 

to rise to 10 million people per year by 2050 (Banin et al., 2017). Infections associated with 

orthopaedic implants are notoriously difficult to cure and when the specter of antibiotic-

resistant organisms is included, it becomes clear that new therapies have to be defined.  

Post-surgical infection of an implant, while relatively rare, can have devastating 

consequences, and when a prosthetic joint implant is involved (Bozic et al., 2005; Kurtz et al., 

2012; Kurtz et al., 2012); or the causative organism is antimicrobial resistant, (Engemann 

et al., 2003) the cost of treatment can exceed $90 000/infection. In severe cases, implanted 
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devices must be removed, which compromises patient mobility, results in long hospital stays, 

pain and disability, and at times even death (Hedequist et al., 2008). The number of 

orthopaedic reconstructions and arthroplasties has steadily increased for the past 5 decades; 

with the majority being hip and knee replacements (Kurtz et al., 2012; Tande et al., 2014). 

Taken together, this means that even if the rate of infection stays constant, the number of 

these types of difficult cases will continue to increase. Orthopaedic hardware is also used in 

many other procedures, including another frequent procedure, spinal surgery for intractable, 

chronic back pain, degenerative lumbar stenosis or traumatic fractures. Even when an actual 

implant is not required, these operations frequently require other implanted materials or 

hardware, such as rods, plates, and screws to permit reconstruction and to stabilize the spine 

and skeletal geometry while healing (Lalli et al., 2015). Like joint implants, these sites 

become infected in up to 14% of cases (Kurtz et al., 2012), with even fewer options than exist 

for the joint replacements. 

Biofilm formation and consequences in orthopaedic infection 

The most common pathogens associated with orthopaedic infections are the Staphylococci, 

with Staphylococcus aureus as the most common strain (Shirtliff et al., 2002); coagulase-

negative Staphylococci and other Gram-positive and Gram-negative bacteria account for the 

remaining infections (Gbejuade et al., 2015). Of further concern is the is the presence of 

methicillin-resistant Staphylococcus aureus (MRSA) (Schimmel et al., 2010) which 

significantly lowers the chance of successfully eradicating joint infection. MRSA are found in 

17.8% of deep spinal fusion infection cases and in these cases even the use of antibiotics is 

rarely successful (Pull Ter Gunne et al., 2013). While the most prevalent implant- and 

hardware-associated infections are due to Staphylococci (Corvec et al., 2012; Tande et al., 

2014; Trampuz et al., 2006), other Gram-positive cocci are also involved at lower frequency, 

including Streptococci (1%–10%) and Enterococci (3%–7%). Gram-negative bacilli causing 

infection include Pseudomonas aeruginosa and Enterobacteriaceae 6%–17%, (Corvec et al., 

2012; Tande et al., 2014; Trampuz et al., 2006) and in rare cases the anaerobes 

(Propionibacteria and Peptostreptococci) (Corvec et al., 2012; Tande et al., 2014; Trampuz 

et al., 2006). In shoulder implants, Propionibacterium acnes (P. acnes) have been more 

prevalent, at up to 38% (Achermann et al., 2013). 

Brought to you by | Karolinska Institute
Authenticated

Download Date | 8/27/18 9:04 AM



Plasma treatment for orthopaedic infection 

5 / 21 

While the identity of the pathogen determines treatment, to some extent, all bacteria behave 

similarly when in the presence of an implant. Specifically, upon insertion of an implant into a 

physiological environment, these materials (commonly alloys such as Ti6Al4V, CoCrMo, and 

stainless steel as well as polymers/ceramics) are rapidly coated with serum proteins. Because 

of this coating, pathogens use their normal physicochemical interactions, as well as, 

extracellular matrix-specific binding proteins to rapidly adhere to the implanted hardware, 

ultimately forming biofilms. In addition, in the physiological environment, contaminating 

bacteria can aggregate with each other to form floating biofilms that, like the implant-

associated biofilms, exhibit an altered phenotype with decreased metabolism, altered 

virulence factor production, and decreased antibiotic sensitivity (Dastgheyb et al., 2015; 

Dastgheyb et al., 2015). These physiological biofilms are minimally comprised of bacteria, 

fibronectin, fibrin, polysaccharide intercellular adhesion (PIA) and extracellular DNA (134, 

146). Together this clinically-relevant biofilm appears to be a hybrid of bacteria adhered to 

cross-linked proteins which are all encased in biofilm slime. In addition to the bacteria being 

encased in the protective extracellular polysaccharide layer, metabolic heterogeneity exists 

within the biofilm matrix, leading to elevated tolerance to antimicrobial challenge and an 

accumulation of antibiotic-degrading enzymes, or expression of specific antibiotic-resistance 

genes (de la Fuente-Nunez et al., 2013). Thus, the central challenge in treating orthopaedic 

infection is to eradicate bacteria within the biofilm structure which sequesters them from the 

immune system and antibiotic eradication. 

Current treatment of post-surgical infection 

Early detection of infection can be difficult as symptoms may take up to a week to manifest. 

The surgical site may be painful, warm, swollen or red, but not be infected (Atkins et al., 

1998; Bauer et al., 2006). Classical radiographic, microbiologic and clinical signs can be 

diagnostic, ambiguous or not present (Parvizi et al., 2014). Prevention of the infection is also 

difficult, as no clear advantage has been demonstrated by a prolonged course of antibiotic 

therapy, and effectiveness is not observed past 24 hrs post-surgery, most likely due to the 

antibiotic recalcitrance of adherent and biofilm bacteria (Antoci et al., 2007; Lewis, 2008). In 

general, the orthopaedic infection is treated by removal of any infected tissue/implants, 

disinfection, and prolonged, aggressive antibiotic treatment. Specifically, the surgical 

approach used to combat an orthopaedic infection can include extensive tissue debridement 
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with prosthesis retention (Tande et al., 2014), or a one-stage or two-stage arthroplasty 

exchange, which includes debridement of the infected tissues, removal of the implant, and 

insertion of a new implant. While it would be preferred that essential instrumentation remains 

in place to prevent instability and loss of corrective purposes, when possible, removal of 

instrumentation for optimal disinfection may give the best outcomes. Because of the 

requirements for surgical stability, removal of instrumentation becomes a special problem for 

infections associated with spinal hardware. In these cases, disruption using irrigation solutions 

(e.g. dilute betadine, acetic acid, hydrogen peroxide, chlorhexidine, etc) along with physical 

disruption (e.g. pulse lavage, VersaJet, etc) are used; but these techniques possess their own 

problems, such as toxicities to normal cells and tissues and causing the bacteria to be spread 

and lodged in other tissues. Superficial extra-fascial infections are often controlled with 

antibiotics, in combination with surgical incision and drainage (Tande et al., 2014). Deep sub-

fascial wounds necessitate debridement and elimination of all affected necrotic tissues and it 

is becoming increasingly more common to place supratherapeutic levels (1-2 g) of 

vancomycin (VAN) directly into the surgical site before closure (Hegde, 2013). VAN is used 

because of its effectiveness against Gram-positive methicillin sensitive and methicillin-

resistant Staphylococcus aureus (MSSA and MRSA). However, this treatment may indirectly 

facilitate the establishment of Gram-negative bacterial infections (Ghobrial et al., 2014). 

Ideally, the development of cold atmospheric plasma as a safe, effective treatment that could 

decontaminate the implant surface and the surgical site in situ would prevent the risks 

associated with spinal instability and reduce patient pain, immobility and the incidence of 

pseudarthrosis.  

Cold atmospheric plasma: composition, mode of action, and bacterial 

response 

Cold atmospheric plasma is an ionized gas created by high-energy electrons colliding with 

atmospheric molecules at tissue tolerable temperatures. The species generated within the 

ionized gas can be tuned for specific biological applications by varying plasma parameters 

and the gas composition in which the plasma is generated. We and others have shown that 

cold plasma can kill bacteria, degrade biofilm matrices, modify extracellular matrix properties 

and direct cell signaling to promote specific cellular behaviors (Eisenhauer et al., 2016; 

Ermolaeva et al., 2011; Flynn et al., 2016; Flynn et al., 2015; Ziuzina et al., 2015). Other 
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applications include elimination of cancer stem cells, induction of basal dermal keratinocytes 

proliferation, and promotion of wound healing through the inhibition of the gap-junction 

proteins (Hasse et al., 2016; Schmidt et al., 2017).  

The composition of cold plasma allows for various modes of action depending on the plasma 

parameters and target. The specific reactive species (whose nature and relative prevalence 

depends on the type of inducer gas used) generated by cold plasma can cause oxidative stress, 

resulting in rupture of bacterial cell membrane and intracellular damage (Alkawareek et al., 

2014). Physical stimuli can include local and global electric fields and biofilm permeabilizing 

shock waves produced by pulsed dielectric barrier discharged plasmas (Babaeva et al., 2010; 

Beebe et al., 2004). However, it is the short-lived reactive oxygen and nitrogen species 

reacting with local molecules that appear to be the critical effectors of antimicrobial effects 

where the reactive species include potent and stable antimicrobial compounds such as nitric 

oxide (NO2), peroxide (H2O2), hypochlorous acid (HOCl), ammonium chloride (NH2Cl) and 

other species. These oxidizing agents, whose concentrations increase proportionally with 

increases in applied voltage, target bacterial DNA, RNA, proteins and lipids (Naitali et al., 

2010).  

The sensitivity to cold plasma inactivation differs between bacterial type and with biofilm 

formation capacity. The cell wall composition differs between Gram-positive and -negative 

bacteria. Gram-positive bacteria are characterized by the presence of the peptidoglycan 

lipoteichoic acid which decorates the cell wall. Gram-negative bacteria possess an outer cell 

membrane with abundant lipopolysaccharide (LPS); these differences in membranes/walls are 

critical for activity for some classes of antibiotics. Cold plasma generated reactive oxygen 

species induce the breakdown of both lipopolysaccharides and peptidoglycans but, the 

mechanism by which the bacterium dies appears to differ (Figure 1) (Han et al., 2015). In the 

Gram-negative Escherichia coli (E. coli), cellular leakage was observed during- and post cold 

plasma treatment. No such leakage was measured in the Gram-positive S. aureus. Thus, it was 

proposed that peroxidation of the E. coli cell membrane, specifically of the lipid content in the 

lipopolysaccharide layers, may lead to destabilization of the cell envelope and death though 

membrane leakage. Similar results would be expected in other gram-negs, such as 

Pseudomonas aeruginosa. Gram-positive species (L. monocytogenes and S. aureus), on the 

other hand, showed evidence of cell envelope shrinkage, and significantly higher intracellular 

ROS concentrations associated with DNA damage, leading to death (Han et al., 2015). A 

recent study shows cell wall thickness correlated with cold plasma inactivation times, but cell 
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membranes and biofilm matrix also affected the time required to inactivate bacteria 

(Alkawareek et al., 2014; de Mesy Bentley et al., 2016). Bacterial inactivation efficacy by 

direct application of cold plasma is determined by the power, time of exposure, and 

composition of carrier gas (Adeli et al., 2012). For more detailed reviews readers are referred 

to the articles by Bourke et al. (2017) and Gilmore et al. (2018).  

Plasma activated liquids 

In addition to direct application of cold plasma, an indirect method has also been employed 

using plasma activation of liquids (PAL); these liquids include; water, saline and cell growth 

media. Indirect treatment of microbes by PAL also results in significant inactivation (Lu 

et al., 2017; Naitali et al., 2010; Shen et al., 2016). Water that has been activated by plasma 

discharges consistently showed powerful antimicrobial activity, where this activity was 

thought to be due to the presence of stabilized reactive nitrogen and oxygen species (Naitali 

et al., 2010). Specifically, OH• radical, ozone, atomic oxygen, and hydrogen peroxide are the 

main agents responsible. Reactive nitrogen species meanwhile include nitric oxide and 

products of its reaction with water, such as nitrites, nitrates and peroxynitrites (Shen et al., 

2016). This antimicrobial activity appears to be due to the combined action of, acidified 

nitrates and hydrogen peroxide added to nitrites, rather than oxidation caused by the former 

two alone (Naitali et al., 2010). The advantages of using PAL for bacterial inactivation 

include less emission of toxic gases and elimination of the transportation/storage of hazardous 

chemicals, especially chlorine-based products that contain potentially carcinogenic 

chlorinated organic compounds (Shen et al., 2016). Extensive publications detail the use of 

both direct and indirect treatments to kill spores, Salmonella typhimurium, Listeria 

monocytogenes and E. coli biofilms and bacteria internalized in produce, as well as 

destruction of Pseudomonas aeruginosa biofilm architecture and viability (Dastgheyb et al., 

2015; Mai-Prochnow et al., 2016; Mody et al., 2009; Ziuzina et al., 2014). 

It is interesting to note that the synergistic effects of these oxidizing agents and an acidic pH 

seem to determine the final antimicrobial effects of PAL in that a low pH creates favorable 

conditions for penetration of the cell membrane by ROS. Chemical reactions can also be 

accelerated by acidic conditions, especially those created by hydroperoxyl radicals that have 

strong oxidizing powers and cause peroxidation of membrane fatty acids. Because of the 

similar chemical makeups, plasma-activated liquids impose damage in the same manner as 
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direct cold plasma (lipid peroxidation and subsequently cross-link reaction of the fatty acid 

side chain), with leakage of intracellular DNA and proteins being the direct cause of cell 

death (Bakkum-Gamez et al., 2017). Remarkably, attack by O and •OH radicals formed 

transient pores in the membrane, which eventually lead to depolarization and 

permeabilization.  

To employ PAL as an antibacterial therapy, however, its efficacy has to be standardized by 

controlling the reactive species contained with the liquid. Using different plasma working 

gases has been the main approach to regulate the reactive species composition. One plasma 

source that has been extensively for PALs generation is based on plasma jet configuration. By 

changing the composition of plasma working gas and plasma jet surrounding gas, the reactive 

species composition can be controlled (Shen et al., 2016; Stoffels et al., 2008; Wende et al., 

2015). Gas bubbles discharge in liquids with different working gases is another approach for 

selective generation of reactive species in PALs (Shen et al., 2016). A recent advance in this 

area is that without using any additional or noble working gases, an open-air discharge with 

different discharge modes (spark discharge and glow discharge) above liquids will produce 

reactive species specificity in plasma activated water (PAW) (Lu et al., 2017). Furthermore, 

using hydrogen peroxide and nitrite as principal reactive species indicators it has been shown 

that the cytotoxicity of PAW can be removed and / or enhanced by formulating their 

concentrations and composition through adjusting the discharge mode and time, again without 

the addition of working gas or chemical scavengers (Lu et al., 2017). These publications 

provide insights into how plasma treated liquids may be harnessed to create safe and effective 

antimicrobial liquids that can be applied during surgery to provide a specific and controllable 

treatment with increased efficacy. 

Immunogenic enhancement by plasma modification of bacterial 

antigens 

In addition to eradicating biofilm and bacteria, cold plasma treatment could also stimulate a 

more robust immune response against the bacteria that may survive the initial treatment. This 

is highly desirable considering the challenging treatment environment associated with a 

surgical site. Specifically, in the process of killing bacteria, cold plasma treatment of 

biological tissues and/or bodily fluids could generate additional reaction products during the 

course of treatment including: Cl2-, ClO- and hypochlorous acid (HOCl) as a result of 
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peroxide generation by the plasma (Wende et al., 2015). Oxidation of bacterial 

macromolecules by HOCl can increase the uptake and processing of bacterial neoantigens by 

antigen-presenting cells (APCs), (Biedron et al., 2015; Chiang et al., 2008; Chiang et al., 

2006). This mechanism is similar to that employed by neutrophils to generate antimicrobial 

effects and antigen immunogenicity through myeloperoxidase activity (Winterbourn et al., 

2016). Interestingly, in a clinical trial, patient-derived dendritic cells (DCs) were activated by 

tumor lysates oxidized by HOCl and successfully used for vaccination (Chiang et al., 2013). 

Our work shows that direct in situ nanosecond pulsed plasma treatment of tumor nodules 

resulted in a 60% eradication of the primary tumor, and our preliminary data and other 

published studies strongly suggested in vivo promotion of immune recognition (Chernets 

et al., 2015; Mizuno et al., 2017). When rechallenged after primary tumor eradication, the 

growth of a second tumor was either unsuccessful or dramatically slowed, indicating immune 

recognition and memory of tumor antigens. Thus, we propose the exciting possibility is that 

cold plasma treatment stimulates an extensive platform of mechanisms that, as explored in the 

tumor, can kill bacteria, eradicate biofilm and produce bacterial neoantigens to strongly 

promote an immune response against any remaining bacteria.  

Extracellular matrix modification by cold plasma 

Another potential effect of cold plasma treatment of surgical site tissues could be extracellular 

matrix modification. Several studies have shown electric fields, ultrasound, mechanical strain 

and other biophysical stimuli enhance fracture repair and endochondral ossification through 

modification of cell extracellular matrix (ECM) interactions (Bassett et al., 1982; Brighton 

et al., 1985; Fredericks et al., 2000; Goodship et al., 1985; Heckman, 1994; Joyce et al., 

1992; Kenwright et al., 1989; Pilla et al., 1990). Investigation of direct biophysical stimuli 

and reactive species effects on ECM found “matricryptic” sites on ECM proteins and 

carbohydrate groups that are exposed by structural or conformational alterations (Davis et al., 

2000). Thus, biologically active ECM peptide fragments, termed “matricryptins” are 

generated after exposure to biophysical stimuli and injury, creating favorable conditions for 

tissue remodeling, promoting cell proliferation and migration (Beattie et al., 2008; Reing 

et al., 2008; Tottey et al., 2011). Our study comparing bone formation after cold plasma 

treatment with either microsecond or nanosecond pulsed dielectric barrier discharge plasmas 

(DBD) suggests that modification of amino acid side chains may occur (Eisenhauer et al., 
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2016). Our analysis of both Matrigel and type IV collagen by FTIR and Western blot showed 

no detectable structural changes or cleavage of the molecules occurred. Production of H2O2, 

NO and ONOO- by cold plasma can modify amino acid side chains and thus alter the basic 

nature of collagen. Specifically, carbonyl groups in proline/hydroxyproline (prevalent in 

collagen) can be convert by ONOO- to a nitroso will produce the more basic n-

nitrosopyrrolidine amino acid (Ahmad et al., 2011). Differences in the production of ONOO- 

can produce different modifications of the amino acid side chains to permit positive or 

negative cell – matrix interactions.  

Tissue tolerance  

Despite its promise of effectively eliminating bacteria and destroying biofilms, the strong 

oxidizing nature of cold plasma-generated reactive species can also pose a significant 

cytotoxicity problem for mammalian tissues. The efficacy of bacterial inactivation is 

determined by power, mode of exposure, time of exposure, and composition of carrier gas. 

Similarly cytotoxic effects of cold plasma on eukaryotic cells, such as human keratinocytes 

and fibroblasts, (Brun et al., 2012) also appear to be mediated predominantly through H2O2 

generated by the plasma discharge (Bekeschus et al., 2014; Winter et al., 2014). However, 

cold plasma-treatment induced damage to tissues such as the stratum corneum of skin tissues 

are usually confined to the upper cell layers, suggesting the extracellular matrix and 

superficial nature of cold plasma may protect tissues from plasma-induced injury (Fluhr et al., 

2012). Thus, the main objective would be to determine if cold plasma can be tuned using 

specific technical parameters (power, time of treatment, gas flow rate) to eradicate biofilm 

bacteria but maintain a “tolerable” cytotoxicity to the tissues involved in the post-surgical 

orthopaedic field. The extensive extracellular matrix surrounding bone and cartilage should 

have a protective effect against cold plasma to render them less vulnerable. Unfortunately, 

most studies to date have been confined to in vitro cell culture and surface tissues such as 

skin. In vivo studies of mouse skin models showed neither localized nor systemic adverse 

effects to repeated cold plasma treatments after follow-up periods of up to one year (Schmidt 

et al., 2017; van der Linde et al., 2017) and indicated improved wound healing (Hung et al., 

2016). Clinical data available from human trials to-date indicate an absence of adverse effects 

such as inflammation and no increased risk of a formation of pre-cancerous skin alterations 

(Heinlin et al., 2013; Isbary et al., 2012; Metelmann et al., 2013). However, it is imperative to 
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test cold plasma-induced cytotoxicity in relevant tissues to permit assessment of all factors 

within the heterogeneous tissues, including growth factors, cells, vasculature, extracellular 

matrix composition, etc., to determine appropriate human in vivo conditions. Currently, 

clinically approved cold plasma generators, such as the Bovie Medical J-Plasma® device and 

the kINPen® MED, permit changing between multiple settings or levels during the course of 

a treatment thus permitting the use of different power levels, gas flow, or pulsed modes to 

eradicate biofilms adhering to titanium in acellular areas and then adjust to a tissue tolerable 

level for the surrounding tissues (Gentile, 2018; Hilker et al., 2017; Parsa, 2015).  

A few studies have been performed to show the feasibility of this. Disinfection of ocular cells 

and tissues using a helium-based portable plasma device to generate low power cold plasma 

showed low cytotoxicity (Brun et al., 2012). Fibroblasts and keratinocytes treated with cold 

plasma showed negligible decreases in number an hour after treatment, while bacterial 

viability using CFU counts, were reduced by 90% (Ermolaeva et al., 2011). The same 

treatment time increased to 5 min significantly reduced human cell viability. Short treatment 

times of 2 min using an argon plasma jet were also shown to effectively reduce high bacterial 

numbers of Pseudomonas aeruginosa by up to 6 log without affecting the viability of dermal 

fibroblasts or keratinocytes in vitro (Boekema et al., 2013). Increased intracellular ROS is 

observed in both microbial and mammalian cells however, the antioxidant response is greater 

in some cell types which serve to protect their viability (Pai Kedar et al., 2015; Wende et al., 

2010) and promote proliferation to restore the numbers over time. Therefore, there is evidence 

supporting minimal tissue damage can be achieved at specific settings and the possibility of 

increased cell proliferation (Brun et al., 2012; Choi et al., 2017; Ermolaeva et al., 2011; Fluhr 

et al., 2012; Hasse et al., 2016; Suzuki et al., 2016) and migration (Brun et al., 2014) of 

mammalian tissue after cold plasma treatment to restore tissues after exposure. 

Justification of cold plasma as a viable treatment option for post-

surgical orthopaedic infection 

Cold atmospheric has consistently been shown to have antimicrobial effects and has real 

promise as a new non-antibiotic candidate for treating infections. It is already being used to 

inhibit Listeria sp. on vegetables, process milk and dairy products in place of thermal 

pasteurization, and inactivates P. acnes biofilms that infect post-surgical artificial joints, heart 

valves, shunts and catheter implants. It has been shown that repeated application of cold 
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plasma does not induce resistance in S. aureus biofilms and neither primary nor acquired 

resistance occurs in MRSA strains exposed to cold plasma treatment (Matthes et al., 2014; 

Zimmermann et al., 2012), reinforcing the novelty of the approach in treating infection. 

Importantly, FDA and EU approved (or pending approvals) for several cold plasma devices 

exist under different commercial device names (J-Plasma®, kINPen® MED, Canady Hybrid 

Plasma® Scalpel). Thus, it is plausible that development or adaptation of a cold plasma device 

to treat infected orthopaedic surgical sites could be quickly adapted for use within the 

constraints of the current medical protocols that guide treatment of surgical site infection. 

Additionally, plasma treated saline or water could be used instead of sterile saline, or in 

addition to other disinfecting solutions commonly used to rinse the site. A diagram illustrating 

the use is shown in Figure 2. After debridement of the necrotic tissue the hardware or implant 

could be removed or remain and be directly treated with cold plasma at higher powers to 

destroy biofilm and kill bacteria when removal is unnecessary or undesirable. Low power 

plasma or plasma activated saline could also be used directly on the tissue. It is plausible that 

while some surface tissues and cells may be damaged, underlying tissues would be stimulated 

by the diffusion of reactive species within the plasma, which stimulate tissue growth and 

wound healing. Cold plasma is currently being tested on facial skin to remove wrinkles. It is 

most likely that the mechanism by which this works is through micro-wounding, which 

stimulates wound healing and tissue remodeling. Application of a cold plasma treatment 

would take only a few minutes, and thus will not prolong the normal surgical procedures. 

Importantly, through the combined effects of direct cold plasma treatment and persistence of 

any remaining plasma-activated liquids, long-term efficacy of the treatments would be 

enhanced.  

Conclusion 

In conclusion, multiple studies need to be performed to (1) determine the technical parameters 

of cold plasma, alone and in combination with PAL, that have biofilm-eradicative properties 

but also maintain tissue viability, (2) determine the tolerable level of cold plasma-induced 

cytotoxicity and measure healing response and immune cell activation, and (3) determine 

long-term effects of cellular damage and recovery of tissue viability. 
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Figure legends 

 

Figure 1 Differences in the effect of cold plasma treatment on Gram-positive versus 

Gram-negative bacteria (adapted from Han et. al. (2015). 

 

Figure 2 Diagrammatic representation depicting treatment of spinal hardware site with 

direct cold atmospheric plasma (dCAP) and plasma activated liquid (PAL) to eradicate 

biofilm contamination. 
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